329 research outputs found

    A METHOD TO ANALYZE SOCCER OFFENSIVE SEQUENCES

    Get PDF
    There is a range of possibilities to analyze the soccer game in relation to physical-technical-tactical aspects. The importance of going toward the goal rapidly since the recovery of possession was defended by Grehaigne et al (1996). The main technique to analyze soccer attack speed in literature was presented by Yue et al (2008). The aim of this study was to propose a method to analyze offensive sequences in soccer based on goal progression velocity (GPV) and goal progression indicator (GPI)

    Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model

    Full text link
    We investigate here the ability of a Green-Naghdi model to reproduce strongly nonlinear and dispersive wave propagation. We test in particular the behavior of the new hybrid finite-volume and finite-difference splitting approach recently developed by the authors and collaborators on the challenging benchmark of waves propagating over a submerged bar. Such a configuration requires a model with very good dispersive properties, because of the high-order harmonics generated by topography-induced nonlinear interactions. We thus depart from the aforementioned work and choose to use a new Green-Naghdi system with improved frequency dispersion characteristics. The absence of dry areas also allows us to improve the treatment of the hyperbolic part of the equations. This leads to very satisfying results for the demanding benchmarks under consideration

    The Borexino detector at the Laboratori Nazionali del Gran Sasso

    Full text link
    Borexino, a large volume detector for low energy neutrino spectroscopy, is currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. The main goal of the experiment is the real-time measurement of sub MeV solar neutrinos, and particularly of the mono energetic (862 keV) Be7 electron capture neutrinos, via neutrino-electron scattering in an ultra-pure liquid scintillator. This paper is mostly devoted to the description of the detector structure, the photomultipliers, the electronics, and the trigger and calibration systems. The real performance of the detector, which always meets, and sometimes exceeds, design expectations, is also shown. Some important aspects of the Borexino project, i.e. the fluid handling plants, the purification techniques and the filling procedures, are not covered in this paper and are, or will be, published elsewhere (see Introduction and Bibliography).Comment: 37 pages, 43 figures, to be submitted to NI

    A critical comparison of integral projection and matrix projection models for demographic analysis

    Get PDF
    Structured demographic models are among the most common and useful tools in population biology. However, the introduction of integral projection models (IPMs) has caused a profound shift in the way many demographic models are conceptualized. Some researchers have argued that IPMs, by explicitly representing demographic processes as continuous functions of state variables such as size, are more statistically efficient, biologically realistic, and accurate than classic matrix projection models, calling into question the usefulness of the many studies based on matrix models. Here, we evaluate how IPMs and matrix models differ, as well as the extent to which these differences matter for estimation of key model outputs, including population growth rates, sensitivity patterns, and life spans. First, we detail the steps in constructing and using each type of model. Second, we present a review of published demographic models, concentrating on size-based studies, which shows significant overlap in the way IPMs and matrix models are constructed and analyzed. Third, to assess the impact of various modeling decisions on demographic predictions, we ran a series of simulations based on size-based demographic data sets for five biologically diverse species. We found little evidence that discrete vital rate estimation is less accurate than continuous functions across a wide range of sample sizes or size classes (equivalently bin numbers or mesh points). Most model outputs quickly converged with modest class numbers (≥10), regardless of most other modeling decisions. Another surprising result was that the most commonly used method to discretize growth rates for IPM analyses can introduce substantial error into model outputs. Finally, we show that empirical sample sizes generally matter more than modeling approach for the accuracy of demographic outputs. Based on these results, we provide specific recommendations to those constructing and evaluating structured population models. Both our literature review and simulations question the treatment of IPMs as a clearly distinct modeling approach or one that is inherently more accurate than classic matrix models. Importantly, this suggests that matrix models, representing the vast majority of past demographic analyses available for comparative and conservation work, continue to be useful and important sources of demographic information.Support for this work was provided by NSF awards 1146489, 1242558, 1242355, 1353781, 1340024, 1753980, and 1753954, 1144807, 0841423, and 1144083. Support also came from USDA NIFA Postdoctoral Fellowship (award no. 2019-67012-29726/project accession no. 1019364) for R. K. Shriver; the Swiss Polar Institute of Food and Agriculture for N. I. Chardon; the ICREA under the ICREA Academia Programme for C. Linares; and SERDP contract RC-2512 and USDA National Institute of Food and Agriculture, Hatch project 1016746 for A .M. Louthan. This is Contribution no. 21-177-J from the Kansas Agricultural Experiment Station

    Loneliness and Social Internet Use: Pathways to Reconnection in a Digital World?

    Get PDF
    With the rise of online social networking, social relationships are increasingly developed and maintained in a digital domain. Drawing conclusions about the impact of the digital world on loneliness is difficult because there are contradictory findings, and cross-sectional studies dominate the literature, making causation difficult to establish. In this review, we present our theoretical model and propose that there is a bidirectional and dynamic relationship between loneliness and social Internet use. When the Internet is used as a way station on the route to enhancing existing relationships and forging new social connections, it is a useful tool for reducing loneliness. But when social technologies are used to escape the social world and withdraw from the “social pain” of interaction, feelings of loneliness are increased. We propose that loneliness is also a determinant of how people interact with the digital world. Lonely people express a preference for using the Internet for social interaction and are more likely to use the Internet in a way that displaces time spent in offline social activities. This suggests that lonely people may need support with their social Internet use so that they employ it in a way that enhances existing friendships and/or to forge new ones

    Hepatitis C Virus (HCV) Evades NKG2D-Dependent NK Cell Responses through NS5A-Mediated Imbalance of Inflammatory Cytokines

    Get PDF
    Understanding how hepatitis C virus (HCV) induces and circumvents the host's natural killer (NK) cell-mediated immunity is of critical importance in efforts to design effective therapeutics. We report here the decreased expression of the NKG2D activating receptor as a novel strategy adopted by HCV to evade NK-cell mediated responses. We show that chronic HCV infection is associated with expression of ligands for NKG2D, the MHC class I-related Chain (MIC) molecules, on hepatocytes. However, NKG2D expression is downmodulated on circulating NK cells, and consequently NK cell-mediated cytotoxic capacity and interferon-γ production are impaired. Using an endotoxin-free recombinant NS5A protein, we show that NS5A stimulation of monocytes through Toll-like Receptor 4 (TLR4) promotes p38- and PI3 kinase-dependent IL-10 production, while inhibiting IL-12 production. In turn, IL-10 triggers secretion of TGFβ which downmodulates NKG2D expression on NK cells, leading to their impaired effector functions. Moreover, culture supernatants of HCV JFH1 replicating Huh-7.5.1 cells reproduce the effect of recombinant NS5A on NKG2D downmodulation. Exogenous IL-15 can antagonize the TGFβ effect and restore normal NKG2D expression on NK cells. We conclude that NKG2D-dependent NK cell functions are modulated during chronic HCV infection, and demonstrate that this alteration can be prevented by exogenous IL-15, which could represent a meaningful adjuvant for therapeutic intervention

    A mathematical model for unsteady mixed flows in closed water pipes

    Get PDF
    We present the formal derivation of a new unidirectional model for unsteady mixed flows in non uniform closed water pipe. In the case of free surface incompressible flows, the \FS-model is formally obtained, using formal asymptotic analysis, which is an extension to more classical shallow water models. In the same way, when the pipe is full, we propose the \Pres-model, which describes the evolution of a compressible inviscid flow, close to gas dynamics equations in a nozzle. In order to cope the transition between a free surface state and a pressured (i.e. compressible) state, we propose a mixed model, the \PFS-model, taking into account changes of section and slope variation

    A revised evolutionary history of the CYP1A subfamily : gene duplication, gene conversion, and positive selection

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Molecular Evolution 62 (2006): 708-717, doi:10.1007/s00239-005-0134-z.Members of cytochrome P450 subfamily 1A (CYP1As) are involved in detoxification and bioactivation of common environmental pollutants. Understanding the functional evolution of these genes is essential to predicting and interpreting species differences in sensitivity to toxicity by such chemicals. The CYP1A gene subfamily comprises a single ancestral representative in most fish species and two paralogs in higher vertebrates, including birds and mammals. Phylogenetic analysis of complete coding sequences suggests that mammalian and bird paralog pairs (CYP1A1/2 and CYP1A4/5, respectively) are the result of independent gene duplication events. However, comparison of vertebrate genome sequences revealed that CYP1A genes lie within an extended region of conserved fine-scale synteny, suggesting that avian and mammalian CYP1A paralogs share a common genomic history. Algorithms designed to detect recombination between nucleotide sequences indicate that gene conversion has homogenized most of the length of the chicken CYP1A genes, as well as the 5’ end of mammalian CYP1As. Together, these data indicate that avian and mammalian CYP1A paralog pairs resulted from a single gene duplication event and that extensive gene conversion is responsible for the exceptionally high degree of sequence similarity between CYP1A4 and CYP1A5. Elevated non-synonymous/synonymous substitution ratios within a putatively unconverted stretch of ~250 bp suggests that positive selection may have reduced the effective rate of gene conversion in this region, which contains two substrate recognition sites. This work significantly alters our understanding of functional evolution in the CYP1A subfamily, suggesting that gene conversion and positive selection have been the dominant processes of sequence evolution.Funding for this work was provided by the NIH Superfund Basic Research Program at Boston University (5-P42-ES-07381) and by the Woods Hole Oceanographic Institution
    corecore